Bookmarked Articles

Ứng dụng Big Data trong lĩnh vực ngân hàng (Lang: VIE)

A picture containing text, sign, blackboard Description automatically generated

Ứng dụng Big Data trong lĩnh vực ngân hàng

Sự phát triển của ngành ngân hàng (Banking) đi đôi với sự ra đời của Big Data Ngành ngân hàng đã phát triển theo bước nhảy vọt trong thập kỷ qua từ hoạt động vận hành kinh doanh đến cung cấp dịch vụ. Điều đáng ngạc nhiên chính là, hầu hết các ngân hàng đều gặp khó khăn hay thất bại trong việc sử dụng, khai thác thông tin, dữ liệu từ cơ sở dữ liệu (database) mà họ có được từ khách hàng và từ các chi nhánh, bộ phận của tổ chức. Tuy nhiên, khi các ngân hàng ngày càng mở rộng dịch vụ, các tiện ích, hay áp dụng công nghệ trong việc phát triển phân khúc thị trường, thu hút thêm khách hàng thì song song họ cũng phải xây dựng một hệ thống hạ tầng để thu thập dữ liệu và tiến hàng phân tích để xác định giải pháp cải thiện hiệu quả kinh doanh. Theo một số chuyên gia dự đoán số lượng dữ liệu tăng lên gấp bảy lần trước năm 2020 (so với năm 2016). Big data là bước tiến lớn đối với sự phát triển của ngành ngân hàng.

Ngày nay, hầu hết các tổ chức ngân hàng, dịch vụ tài chính và bảo hiểm (Banking, Financial services and Insurance (BFSI)) đang nỗ lực để áp dụng một cách tiếp cận mới theo hướng khai thác dữ liệu để phát triển và đổi mới các dịch vụ mà họ cung cấp cho khách hàng. Giống như hầu hết các ngành công nghiệp khác, phân tích dữ liệu lớn (Big data analytics) sẽ là một sự thay đổi lớn quan trọng trong cuộc chiến giữa các tổ chức cùng ngành. Mặc dù nhiều tổ chức BFSI đang thay đổi cách thức khai thác dữ liệu bằng cách thu thập một khối lượng dữ liệu khổng lồ và tiến hành phân tích, nhưng đó chỉ là những bước tổng quát, những bước riêng lẻ ở từng giai đoạn trong quy trình khai thác Big data. Trong tất cả trường hợp, các dự án Big data được hình thành đều hướng đến mục tiêu ban đầu là trả lời cho câu hỏi: “Những dữ liệu này có thể giúp chúng ta giải quyết các vấn đề kinh doanh như thế nào?” Khi khối lượng khách hàng tăng lên, nó ảnh hưởng đáng kể đến mức độ, khả năng cung cấp dịch vụ của từng tổ chức. Thực tiễn cho thấy việc phân tích dữ liệu hiện tại đã đơn giản hóa quá trình theo dõi và đánh giá khách hàng tín dụng của các ngân hàng và các tổ chức tài chính, dựa trên khối lượng lớn dữ liệu như thông tin, hồ sơ cá nhân và các thông tin bảo mật khác. Nhưng với sự giúp đỡ của Big data, các ngân hàng có thể khai thác để liên tục theo dõi hành vi của khách hàng trong thời gian thực, xác định được các nguồn dữ liệu cần thiết để thu thập phục vụ cho việc đưa ra giải pháp. Quá trình đánh giá hồ sơ khách hàng trong thời gian thực sẽ dần thúc đẩy hiệu suất hoạt động và lợi nhuận, từ đó đẩy mạnh phát triển tổ chức hơn nữa.

Theo Forbes, 87% các công ty cho rằng Big data sẽ tạo ra những thay đổi lớn cho các ngành công nghiệp của họ đến cuối thập kỷ thứ 2 của thế kỷ 21. Thậm chí nhiều công ty còn nghĩ rằng nếu không có một chiến lược Big data cụ thể và hiệu quả sẽ khiến họ tụt lại phía sau trong thời đại công nghệ 4.0  ngày nay. Có rất nhiều nguồn dữ liệu Big data trong hầu hết ở các ngành và lĩnh vực khác nhau, không chỉ ở lĩnh vực ngân hàng và dịch vụ tài chính. Mọi tương tác, mọi giao dịch của khách hàng ở ngân hàng đều tạo ra các bản ghi điện tử, các bản sao lưu được lưu lại theo quy định pháp luật, và các giao dịch tại các trụ ATM ở các địa điểm khác nhau cũng được lưu thông tin tại ngân hàng. Nhờ phân tích Big data, các công ty dịch vụ tài chính không còn lưu trữ dữ liệu theo yêu cầu bắt buộc như ngày xưa nhưng giờ đây họ đang tích cực, chủ động hơn trong việc khai thác để có được những kết quả mà dựa vào đó đưa ra được các giải pháp cải thiện hoạt động, gia tăng lợi nhuận của tổ chức. Ngoài ra, các công ty cũng không chờ đợi một khoảng thời gian dài mới có thể phân tích các dữ liệu lịch sử, dữ liệu quá khứ. Hầu hết các phân tích Big data được thực hiện chủ yếu xảy ra trong thời gian thực nhằm thúc đẩy việc đưa ra các quyết định chiến lược một cách nhanh chóng.

Tóm lại, Big data chính là nguồn lực quan trọng, mang tính chất nòng cốt tạo ra lợi thế cạnh tranh ở bất kỳ một tổ chức tài chính nào đặc biệt khi việc nắm bắt nhu cầu của người tiêu dùng ngày càng phức tạp mặc dù đã thuận tiện hơn, dễ dàng hơn nhờ sự phát triển vượt bậc của công nghệ, kỹ thuật. Big data không chỉ đem lại các cái nhìn mới, sự sáng tạo trong quá trình đổi mới từng loại hình dịch vụ đến khách hàng mà còn đảm bảo hiệu quả kinh doanh với rủi ro, chi phí được tối ưu nhất Việc xác định các mảng dịch vụ, các bộ phận, các chức năng trong tổ chức tài chính, nơi mà Big data có thể được xem xét nhằm mục đích khai thác một cách hiệu quả nhất dựa vào sự kết hợp giữa các kiến thức, mô hình kinh doanh và khả năng áp dụng phần mềm công nghệ sẽ tạo ra cơ hội cạnh tranh cho chính tổ chức đó. Tùy vào mục đích, cơ cấu, nguồn lực, khả năng khác nhau ở mỗi tổ chức mà sẽ có nhiều trường hợp ứng dụng Big data khác nhau, mang tính chất đặc thù, riêng biệt. Dưới đây là các trường hợp sử dụng phổ biến nhất – được chúng tôi nghiên cứu và chọn lọc – mà các ngân hàng và công ty dịch vụ tài chính đang thực hiện để tìm kiếm các giá trị ẩn sâu bên trong quá trình phân tích Big data.

Các ứng dụng của Big data trong lĩnh vực Banking 

Phân tích các thói quen chi tiêu của khách hàng

Các ngân hàng có khả năng truy cập trực tiếp nguồn thông tin, dữ liệu lịch sử dồi dào liên quan đến các thói quen, hành vi chi tiêu của khách hàng. Các ngân hàng còn nắm thông tin về số tiền một khách hàng được trả bao nhiêu ví dụ như mức lương cụ thể trong bất kỳ tháng nào, số tiền được chuyển vào tài khoản tiết kiệm, số tiền đã được thanh toán đến các công ty cung cấp tiện ích (ví dụ công ty điện lực, công ty cung cấp dịch vụ internet,..), thời gian khách hàng sử dụng dịch vụ của ngân hàng, v.v. Điều này cung cấp cơ sở, cơ hội để các ngân hàng tiếp cận và phân tích dữ liệu sâu hơn. Áp dụng các chức năng sàng lọc thông tin (filter function) ví dụ như khi lọc ra thời điểm dịp lễ hay mùa lễ và điều kiện kinh tế vĩ mô (ví dụ tình hình lạm phát, tỷ lệ thất nghiệp,..) mà nhân viên ngân hàng có thể hiểu được nguyên nhân tác động làm mức lương của khách hàng tăng hay giảm và khả năng chi tiêu của khách hàng thay đổi như thế nào. Đây là một trong những yếu tố nền tảng cho quá trình đánh giá rủi ro, sàng lọc, thẩm định hồ sơ cho vay, đánh giá khả năng thế chấp và cung cấp nhiều sản phẩm tài chính khác (cross-selling) đến khách hàng như bảo hiểm. Các ngân hàng được hưởng lợi rất nhiều nếu biết được thông tin khách hàng rút tiền mặt – tất cả số tiền có được vào ngày trả lương –  hoặc nếu họ muốn giữ tiền lại trên thẻ tín dụng  (credit card)/ thẻ ghi nợ (debit card). Tận dụng điều đó, ngân hàng có thể tiếp cận khách hàng, mở rộng dịch vụ với các đề nghị, thu hút khách hàng đầu tư vào các khoản vay ngắn hạn với tỷ lệ thanh toán cao và lãi suất thích hợp, v.v.

Phân khúc khách hàng và xem xét (thẩm định) hồ sơ

Một khi các phân tích ban đầu về thói quen chi tiêu của khách hàng cùng với xác định các loại hình dịch vụ, kênh giao dịch được khách hàng ưu tiên (ví dụ khách hàng muốn gửi tiết kiệm hay muốn đầu tư vào các khoản vay) được hoàn tất thì các ngân hàng sẽ có được một database (cơ sở dữ liệu) phục vụ cho quá trình phân khúc, phân loại khách hàng một cách phù hợp dựa vào thông tin và hồ sơ khách hàng cung cấp. Những khách hàng nào chi tiêu dễ dàng thoải mái, các nhà đầu tư nào thận trọng kỹ lưỡng, khách hàng nào thanh toán các khoản nợ nhanh chóng, khách hàng nào mới bắt đầu trả nợ khi sắp đáo hạn, thời gian khách hàng sử dụng dịch vụ của ngân hàng để đo lường lòng trung thành… Biết được hồ sơ cá nhân của tất cả khách hàng giúp ngân hàng đánh giá chi tiêu và thu nhập dự kiến ​​trong tháng tới và lập kế hoạch chi tiết để đảm bảo lợi nhuận cho chính tổ chức và lợi ích cho chính khách hàng. Big Data sẽ cung cấp cho các ngân hàng những hiểu biết, kiến thức chuyên môn sâu về thói quen và mô hình chi tiêu của khách hàng, đơn giản hóa những nhiệm vụ xác định nhu cầu và mong muốn của họ. Bằng cách có thể theo dõi từng giao dịch của khách hàng, các ngân hàng sẽ có thể phân loại khách hàng dựa trên các thông số khác nhau, bao gồm các dịch vụ thường được khách hàng sử dụng, thời gian sử dụng dịch vụ, thói quen chi tiêu khi dùng thẻ tín dụng hoặc thậm chí là giá trị tài sản ròng (net worth – thu nhập cộng với giá trị tài sản của khách hàng trừ đi các khoản nợ). Lợi ích mà phân khúc khách hàng đem lại là nó cho phép các ngân hàng nhắm mục tiêu khách hàng tốt hơn với các chiến dịch tiếp thị có liên quan được thiết kế để đáp ứng chính xác nhu cầu của khách hàng. Phân tích dữ liệu Big Data tăng khả năng cho các công ty, tổ chức BFSI nắm được nhu cầu tìm ẩn bên trong từng khách hàng (customer insights) từ đó tạo được phân khúc khách hàng. Tuy nhiên việc thu thập và đánh giá thông tin khách hàng đòi hỏi sự đầu tư vào cơ sở hạ tầng của tổ chức cũng như đầu tư vào mạng lưới liên kết giữa mọi nhân viên thuộc các phòng ban, bộ phận chức năng của tổ chức với công nghệ, phần mềm kỹ thuật tiên tiến phục vụ quá trình khai thác Big Data.

Bán kèm thêm các dịch vụ khác (service cross-selling)

Dựa vào database mà ngân hàng có thể thu hút thêm, hay giữ chân khách hàng bằng cách giới thiệu thêm các dịch vụ khác. Ví dụ ngân hàng có thể giới thiệu các khoản đầu tư có lãi suất hấp dẫn đến các khách hàng có lượng tiền nhàn rỗi hoặc những nhà đâu tư lúc nào cũng luôn thận trọng, cân nhắc trong việc ra quyết định đầu tư. Hoặc ngân hàng có đề xuất các vay ngắn hạn cho các khách hàng có thói quen chi tiêu “thoải mái” cho nhu cầu tiêu dùng hàng ngày của họ hoặc những khách hàng đang gặp khó khăn trong việc thanh toán nợ cũ. Phân tích một cách chính xác về hồ sơ cá nhân của khách hàng, ngân hàng có thể bán kèm các dịch vụ khác quả hơn và thu hút khách hàng tốt hơn với các ưu đãi được “cá nhân hóa” tập trung chính xác vào nhu cầu khách hiệu quả hơn, từ đó tăng doanh thu cho công ty.

Xây dựng hệ thống thu thập các phản hồi khách hàng (feedback) và phân tích chúng

Khách hàng có thể để lại phản hồi sau mỗi lần giao dịch hay mỗi lần nhận được tư vấn từ trung tâm hỗ trợ chăm sóc khách hàng (customer call center) hoặc thông qua các biểu mẫu phản hồi, nhưng thường xuyên ( hay có thể nói nhiều khả năng) chia sẻ ý kiến ​​ thông qua các phương tiện truyền thông xã hội (social media) hơn ví dụ Facebook, Zalo,… Các công cụ Big Data có thể tìm kiếm chọn lọc thông qua các thông tin, feedback công khai trên các social media và thu thập tất cả những dữ liệu đề cập về thương hiệu của ngân hàng để có thể phản hồi nhanh chóng và đầy đủ đến khách hàng. Ngoài ra cũng hỗ trợ ngăn chặn các tin đồn thất thiệt ảnh hưởng đến hoạt động kinh doanh và niềm tin nơi khách hàng ví dụ như vụ ngân hàng Agribank vướng phải tin đồn phá sản trong hồi đầu tháng 11, 2018 vừa qua. Khi khách hàng cảm thấy ngân hàng lắng nghe, đánh giá cao ý kiến ​​và thực hiện những cải tiến, thay đổi theo yêu cầu của họ thì sự trung thành dành cho thương hiệu sẽ gia tăng, hơn nữa cải thiện hình ảnh của ngân hàng. Để có cái nhìn tổng quát, một cái nhìn 360 độ về khách hàng các ngân hàng cần xây dựng một trung tâm dữ liệu – trung tâm lưu trữ tất cả sự tương tác của khách hàng với thương hiệu bao gồm dữ liệu cá nhân cơ bản, lịch sử giao dịch, lịch sử duyệt web, dịch vụ, v.v.

Hiện tại để hỗ trợ các tổ chức trong việc phân Trên đây mới là những ứng dụng của Big Data trong lĩnh vực Banking nhắm đến mục đích phân khúc khách hàng gia tăng thêm lượng khách hàng sử dụng dịch vụ tại các ngân hàng (bao gồm cả khách hàng cũ và khách hàng mới) bằng cách phân tích dữ liệu (feedback và hồ sơ cá nhân của khách hàng) để tiếp thu ý kiến, xác định được nhu cầu, thói quen chi tiêu của khách hàng để đáp ứng một cách phù hợp.

Ở phần tiếp theo chúng tôi sẽ phân tích về các ứng dụng của Big Data trong việc hướng đến marketing từng khách hàng (personlized marketing), thay đổi cách thức cung cấp dịch vụ sao cho phù hợp. Đặc biệt là đảm bảo hiệu quả hoạt động, giảm thiểu rủi ro bằng cách phát hiện, ngăn chặn các gian lận trong giao dịch tài chính,…

Ứng dụng Big data trong lĩnh vực ngân hàng (P.2)

Ở phần trước chúng tôi đã giới thiệu cho các bạn sơ lược về tầm quan trọng của khai thác Big Data trong lĩnh vực ngân hàng (Banking industry) và các ứng dụng đầu tiên như: phân tích thói quen chi tiêu khách hàng, phân khúc khách hàng,..Trong bài viết này, chúng tôi sẽ cung cấp thông tin về 2 ứng dụng còn lại của Big Data trong việc thu hút, giữ chân khách hàng nhằm gia tăng lợi nhuận của ngân hàng đồng thời liệt kê một vài dữ liệu cần phân tích để phân khúc khách hàng. Tiếp theo chúng tôi sẽ đi vào phần quan trọng, cũng được xem là các ứng dụng chính của Big Data ở lĩnh vực Banking hướng đến cải thiện hoạt động của tổ chức, giảm thiểu rủi ro gian lận,..

Các ứng dụng của Big Data trong lĩnh vực ngân hàng (tiếp tục)

Marketing theo hướng cá nhân hóa (personalized marketing)

Nếu các bạn có theo dõi thì ở bài viết trước chúng tôi đã có nhắc đến ứng dụng của Big Data trong việc xác định nhu cầu của từng khách hàng dựa trên ý kiến, hay feedback của họ hoặc thông qua hồ sơ tín dụng (hồ sơ cá nhân) của khách hàng và xác định thói quen chi tiêu thông qua các lịch sử giao dịch,.. Các thông tin bổ ích đó chính là công cụ để hỗ trợ ngân hàng marketing theo hướng cá nhân hóa đến từng khách hàng. Sau khi có được phân khúc khách hàng thì các ngân hàng cần tận dụng để personalized marketing để nhắm mục tiêu khách hàng dựa trên hiểu biết về thói quen chi tiêu cá nhân của họ. Ngoài việc thu thập dữ liệu về lịch sử giao dịch của khách hàng, các công ty dịch vụ tài chính hay ngân hàng cũng có thể kết hợp dữ liệu phi cấu trúc (unstructured data) – một dạng dữ liệu Big Data –  lấy được từ mạng xã hội hay social media ví dụ như hồ sơ của khách hàng trên Facebook,.. để có được một bức tranh đầy đủ hơn về nhu cầu của khách hàng dựa trên các phân tích về tâm lý, mong muốn khách hàng ở mọi thời điểm. Mặt khác, dữ liệu của khách hàng ở các nền tảng social media hay các ứng dụng xã hội thông minh khác sẽ giúp ngân hàng phân tích được các rủi ro có thể xảy ra mà xem xét có nên cung cấp các khoản vay hay không ngoài việc thẩm định hồ sơ như thông thường. Sau khi phân tích và nắm được nhu cầu cụ thể và riêng biệt của mỗi khách hàng, các tổ chức nên tiếp tục phân khúc sâu hơn nữa và cung cấp các giải pháp, kế hoạch marketing phù hợp để từ đó có được tỷ lệ phản hồi, tỷ lệ chuyển đổi cao hơn từ mỗi khách hàng.

Ví dụ các ngân hàng sử dụng công cụ e-mail marketing để gửi đến khách hàng các thông tin mới nhất về những dịch vụ cho vay ngắn hạn với lãi suất vừa phải, hay gửi tiết kiệm với lãi suất hấp dẫn, hoặc các chương trình ưu đãi khác,…Việc tạo ra các sản phẩm dịch vụ cung cấp cho từng phân khúc khách hàng, hay thậm chí từng khách hàng cụ thể sẽ giúp các ngân hàng xây dựng hình ảnh thương hiệu và tạo dựng một mối quan hệ tốt ở từng khách hàng. Không chỉ riêng ở lĩnh vực ngân hàng, Big Data còn hỗ trợ marketing ở hầu hết mọi lĩnh vực khác nhau nếu các công ty biết được tầm quan trọng và có được một tầm nhìn chiến lược nghiêm túc trong việc khai thác Big Data. Theo McKinsey, việc sử dụng dữ liệu để đưa ra quyết định marketing tốt hơn có thể tăng năng suất tiếp thị, thu hút khách hàng thêm 15-20% ngoài các giải pháp marketing thông thường.

Thay đổi cách thức cung cấp dịch vụ đến khách hàng

Hệ thống Big Data có thể là một hệ thống phức tạp liên kết giữa nhiều bộ phận chức năng khác nhau, nhưng công việc của nó là đơn giản hóa các nhiệm vụ trong một tổ chức. Bất cứ khi nào một tên khách hàng hoặc số tài khoản được nhập vào hệ thống, hệ thống Big Data sẽ hỗ trợ sàng lọc tất cả dữ liệu và chỉ truyền đi hay cung cấp các dữ liệu được yêu cầu để phục vụ cho quá trình phân tích. Điều này sẽ cho phép các ngân hàng tối ưu hóa quy trình làm việc và tiết kiệm cả thời gian và chi phí. Big Data cũng sẽ cho phép các tổ chức xác định và khắc phục các vấn đề, trước khi chúng ảnh hưởng đến khách hàng của họ. Đôi khi khách hàng cũng có thể là nguồn gốc của một vấn đề. Ví dụ, các nhà đầu tư có thể đưa ra quyết định, nhưng sau đó thay đổi ý định của họ tại một thời điểm trong tương lai. Big Data sẽ giúp ngân hàng thay đổi phương thức cung cấp dịch vụ của họ theo cách mà những khách hàng sẽ không thể “đi ngược lại” với cam kết ban đầu của họ. Big Data cho phép ngành ngân hàng theo dõi hạn mức cho vay và thẻ tín dụng của khách hàng, đảm bảo rằng họ không chi tiêu quá mức quy định. Cách cung cấp dịch vụ thay đổi như thế nào còn phụ thuộc vào quy mô hoạt động, tính chất đặc thù của loại hình dịch vụ, cơ sở hạ tầng,..của tổ chức ngân hàng đó. Big Data chỉ đưa ra kết quả là thông tin ví dụ như những khách hàng nào có khả năng không thanh toán được nợ, hay những khách hàng có khả năng rời dịch vụ (churn risk) và nhiệm vụ của từng ngân hàng là suy nghĩ ra giải pháp để khắc phục ví dụ theo dõi “sát sao” và thông tin liên tục về thời hạn trả nợ đến các khách hàng có thói quen chậm trễ trong việc thanh toán lãi,… Nói tóm lại, mục đích đầu tiên trong việc ứng dụng của Big Data mà chúng tôi đề cập ở phần 1 và đầu phần 2 này tập trung hướng đến phân khúc khách hàng, cải tiến dịch vụ, marketing tăng doanh số, lợi nhuận dựa trên toàn bộ thông tin về khách hàng mà tổ chức ngân hàng có được – chính là dữ liệu Big Data cần được phân tích. Những dữ liệu có thể bao gồm:

  • Hồ sơ tín dụng của khách hàng
  • Thông tin về kỳ hạn vay của khách hàng (ngắn hạn, trung hạn hay dài hạn)
  • Mức cấp tín dụng theo từng thời hạn (ngắn hạn, trung hạn hay dài hạn)
  • Cơ cấu các loại hình dịch vụ theo số lượng khách hàng đăng ký và mức cấp tín dụng.
  • Thời gian tham gia dịch vụ ví dụ trong 1 năm, từ 1 đến 3 năm hoặc trên 3 năm,..
  • v ….

Ngoài gia tăng lợi nhuận, mở rộng cung cấp dịch vụ đến các khách hàng tiềm năng, các ngân hàng cũng có thể dựa vào database đã thu thập để kiểm soát rủi ro, các gian lận tín dụng, đảm bảo hiệu quả hoạt động của tổ chức.

Phát hiện và ngăn chặn hành vi lừa đảo, vi phạm pháp luật (Fraud identification)

Một trong những vấn đề lớn nhất mà ngành ngân hàng phải đối mặt là gian lận, tội phạm trong tín dụng. Big Data sẽ cho phép các ngân hàng đảm bảo rằng không có giao dịch trái phép nào được thực hiện, cung cấp mức độ an toàn, nâng cao tiêu chuẩn bảo mật của toàn bộ ngành. Nhờ vào dữ liệu về lịch sử giao dịch và hồ sơ tín dụng của khách hàng, ngân hàng sẽ có thể xác định hay nhận được cảnh báo nếu có điều gì bất thường xảy ra trong quá trình hoạt động, cung cấp dịch vụ đến khách hàng. Ví dụ nếu một nhà đầu tư hay khách hàng thường thanh toán chi tiêu cho sinh hoạt hằng ngày hoặc để tiền trong tài khoản gửi tiết kiệm lấy lãi, nhưng trong một ngày lại cố gắng rút toàn bộ số tiền từ tài khoản của mình qua máy ATM, điều này có nghĩa là thẻ có thể đã bị mất cắp và sử dụng bởi chính những kẻ cắp. Nhân viên ngân hàng sẽ gọi điện đến chủ tài khoản hoặc thông báo đến khách hàng bằng bất kỳ hình thức nào để xác minh lại giao dịch đó một cách rõ hơn: giao dịch hợp pháp khách hàng thực hiện hay giao dịch trái phép bởi tội phạm lừa đảo, tội phạm đã trộm được thẻ mà khách hàng không biết? Cứ thế, việc phân tích dữ liệu giao dịch lịch sử và làm cơ sở để kiểm tra tính hợp pháp, an toàn bảo mật của các giao dịch hiện tại sẽ giảm thiểu được hành vi vi phạm pháp luật có thể xảy ra. Các ngân hàng và tổ chức tài chính khai thác Big Data để phân biệt giữa các giao dịch là hành vi phạm tội với các giao dịch hợp pháp bằng cách áp dụng các thuật toán phân tích dữ liệu (data analytics models) và “học máy” (machine learning). Các hệ thống phân tích sẽ tự động phát hiện, trích xuất các giao dịch bất hợp pháp ở thời gian thực và đề xuất các hành động ngay lập tức, chẳng hạn như chặn các giao dịch bất thường, ngăn chặn hành vi lừa đảo trước khi nó xảy ra đảm bảo lợi ích của khách hàng và lợi nhuận của chính ngân hàng.

Kiểm soát rủi ro (Risk management), tuân thủ luật pháp và minh bạch trong báo cáo tài chính (Compliance and Reporting)

Ngoài phát hiện các hành vi phạm tội, bảo vệ lợi ích người tiêu dùng, các ngân hàng có thể ứng dụng Big Data đo lường, kiểm soát rủi ro khi thực hiện các giao dịch bằng cổ phiếu với những nhà đầu tư và kiểm tra hồ sơ vay của khách hàng. Dĩ nhiên tất cả phải dựa trên sự phân tích có kết quả từ mọi dữ liệu lịch sử liên quan. Các thuật toán Big Data còn giúp giải quyết các vấn đề về tuân thủ quy định pháp luật về kế toán, kiểm toán và báo cáo tài chính minh bạch nhằm hợp lý hoá các hoạt động của tổ chức từ đó giảm được chi phí quản lý. Các tổ chức ngân hàng và tài chính hoạt động trong một khung pháp lý rất nghiêm ngặt, đòi hỏi mức độ cao nhất trong kiểm soát minh bạch các hoạt động tài chính, tuân thủ các điều luật và báo cáo đầy đủ chi tiết đến các cơ quan nhà nước, chính phủ. Ở Việt Nam, các ngân hàng và tổ chức tín dụng phải tuân thủ toàn bộ Luật Ngân hàng trong đó có Đạo luật về Luật Ngân hàng Nhà nước Việt Nam và Luật Các Tổ chức tín dụng. Ở Mỹ thì có Đạo luật Dodd – Frank, được ban hành sau cuộc khủng hoảng tài chính năm 2008, yêu cầu giám sát các giao dịch và tài liệu chi tiết về mọi giao dịch xảy ra ở bất kỳ tổ chức tài chính nào.

Việc phát hiện sớm hành vi gian lận của khách hàng là cực kỳ quan trọng. Hệ thống Big Data thu thập và lưu trữ dữ liệu trong một cơ sở dữ liệu có quy mô lớn giúp ngân hàng quản lý, tiến hành phân tích một cách nhanh nhất bằng cách sử dụng các phần mềm, thuật toán chuyên dụng. Và khi phát hiện một số lượng lớn rủi ro có thể xảy ra, ngân hàng sẽ dễ dàng kiểm soát. Big Data đóng một vai trò to lớn trong quá trình tích hợp các chức năng của các bộ phận, phòng ban và yêu cầu xử lý dữ liệu của ngân hàng vào một hệ thống trung tâm duy nhất. Qua đó hỗ trợ kiểm soát, ngăn chặn vấn đề mất dữ liệu, giảm thiểu rủi ro và gian lận. Tham gia vào việc kiểm soát đánh giá và nâng cao hiệu quả làm việc của nhân viên Quá tập trung vào gia tăng lợi nhuận mà nhiều ngân hàng lại thường quên đi một ứng dụng tiềm năng của Big Data mà có thể có tác động rất lớn đến quá trình phát triển kinh doanh. Đó chính là nâng cao năng suất làm việc của nhân viên. Hệ thống Big Data hỗ trợ thu thập, phân tích, đánh giá, truyền tải dữ liệu về hiệu quả làm việc của nhân viên. Kết quả phân tích sẽ giúp các nhà lãnh đạo có cái nhìn về tình hình, thực trạng làm việc hiện tại của nhân viên mình như những nhân viên nào đang có thành tích tốt nhất, những nhân viên nào không đạt được chỉ tiêu, và đặc biệt là xem xét mức độ hài lòng của nhân viên về môi trường làm việc, phúc lợi,.. của ngân hàng dành cho họ.

Các công cụ của Big Data khai thác toàn bộ dữ liệu đều ở thời gian thực, do đó lúc giải pháp được đưa ra sẽ mang tính khả thi cao, và tạo nên những sự thay đổi nhanh chóng. Ngoài ra các ngân hàng có thể đo lường nhiều thứ không chỉ mỗi hiệu suất làm việc của cá nhân, mà còn tinh thần đồng đội, sự tương tác giữa các phòng ban và văn hóa tổng thể của công ty. Nhân viên sẽ giảm thời gian dành cho các công việc mang tính thủ công gồm nhiều quy trình phức tạp bằng cách dựa vào hệ thống Big Data gồm các phần mềm đã được lập trình sẵn để giải quyết các công việc ấy một cách nhanh chóng và chính xác. Từ đó nhân viên dành nhiều thời gian cho các công việc, nhiệm vụ khó hơn, cấp bách hơn từ cấp trên giao xuống.

Kết luận

Các ngân hàng hiện ngày nay có quyền truy cập hàng triệu hoặc thậm chí hàng tỷ thông tin, dữ liệu về nhu cầu và cảm nghĩ của khách hàng. Giờ đây họ có thể sử dụng các công cụ Big Data để khai thác chúng nhằm mang lại hiệu quả kinh doanh tốt hơn – như đang tận dụng nguồn lực thứ ba ngoài nhân lực và tài chính. Sự ra đời của điện toán đám mây (cloud computing) có thể tích hợp các phần mềm, thuật toán phân tích và đồng bộ hóa theo thời gian thực trong cùng một hệ thống sẽ đem lại kết quả chính xác phục vụ cho quá trình đưa ra giải pháp khả thi cao ở hiện tại hay trong tương lai. Big Data sẽ mở rộng hoạt động của ngành ngân hàng theo cách mà sẽ cho phép họ vừa gia tăng lợi nhuận và giảm các chi phí phát sinh. Bằng cách cập nhật, ứng dụng không chỉ Big Data và các xu hướng mới nổi trên toàn cầu như AI (trí tuệ nhân tạo) hay Machine Learning trong thời đại công nghệ 4.0, các ngân hàng và tổ chức tài chính trong ngành BFSI (Banking Financial Services and Insurance) sẽ nắm bắt tốt hơn nhu cầu của khách hàng, hiểu rõ mục tiêu hoạt động trong nội bộ tổ chức nhằm cung cấp các dịch vụ được cải tiến một cách kịp thời với chi phí hoạt động tối ưu đến khách hàng hay đưa ra các giải pháp cải thiện năng suất làm việc của nhân viên.

Ngoài việc xây dựng cơ sở hạ tầng, hệ thống, các công cụ, phần mềm công nghệ hỗ trợ khai thác Big Data, chuyên gia phân tích dữ liệu có thể giúp các ngân hàng thiết lập các mục tiêu thích hợp cho dự án Big Data và tích hợp kiến thức chuyên môn về phân tích vào các bộ phận, phòng ban chức năng của tổ chức để mang lại lợi ích tối đa không chỉ trong nội bộ mà đến khách hàng.

Source: BigDataUni

 

You may also like

Read More